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We discuss quantum insights due to the null-strut formalism. These insights deal 
primarily with two topics: the formalism of a theory of canonical simplicial 
quantum gravity based on the geometrodynamic duality of null-strut calculus, 
and the natural implementation of spinors and spin networks in null-strut 
calculus. 

1. INTRODUCTION 

Quantum gravity has remained an elusive dream of physicists for several 
decades, always producing more questions than answers. The perturbative 
Feynman diagram method, which had been so successful in dealing with 
quantum electrodynamics, was not sufficient to deal with gravity. Diagrams 
with loops in the expansion of quantum gravity have yielded divergences 
which cannot be renormalized with a finite number of parameters. However, 
quantum gravity is, by nature, a nonperturbative theory. All terms in the 
loop expansion are equally important. Many physicists now believe that 
the renormalization problem may be due to the inappropriate use of per- 
turbative methods. This is the major motivation behind the development 
of nonperturbative methodologies for quantum gravity calculations. 

A nonperturbative method which has recently been gaining in popular- 
ity is the simplicial minisuperspace method. A description of the method, 
in the Lagrangian formalism, has been given (Hartle, 1985) and a computer 
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calculation for gravity with higher derivative terms has been accomplished 
(Hamber and Williams, 1984, 1985, 1986a,b). The formalism given by Hartle 
is described briefly as follows. 

Consider the wave function ~o for a closed three-geometry in a state 
of minimum excitation. The three-geometry consists of n disconnected 
compact three-manifolds OMi, which are without boundary, having three- 
metrics h;. These manifolds might also have nontrivial topology. ~0 is given 
by 

�9 o[hi, OM~; i = 1, n] = ~ v(M) [ 6g,~t3 exp{-I[g~t~, M]} (1) 
M ,) C 

where the sum is over four-manifolds M, with the boundary manifold stated 
above, and each one contributing with weight u(M); g~t~ is a Euclidean 
four-geometry on the manifold OM; and I is the Euclidean gravitational 
action, including cosmological constant and surface terms 

12I[g~]=-2 foM d3xh'/2K- fM d4xgl/2(R-2A) (2) 

We are using units where h = c = 1. Therefore, the Planck length is given 
by l= (16~rG) 1/2 (see Figure 1). 

Let us now approximate M with metric g~o by a triangulation with 
vertices X0, edges El, triangles E2, tetrahedra Z3, and four-simplices E4 
(Y~). The boundary simplices, which approximate (hi, OMi), are denoted 
by 0E~; and the interior simplices are denoted by int E~. Let sj denote the 
squared edge lengths of the lattice which are projections of the metric. In 

h 3 , M  3 

Fig. 1. A representation of the configuration space for path integral quantization. 
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the simplicial approximation, (1) is replaced by 

�9 o[sj,jeOX~,] =~ v(M) fc dE1 exp[-I (s j ) ]  (3) 

with the action replaced by the Regge action (with surface terms) 

I = - 2  2 A(o')~b(~r)-2 ~ A(~r)0(o')+2A E V4(r) (4) 
o - ~ 0 E  2 o - E i n t  ~" 2 o- c .~, 4 

where A(r is the area of triangle o-, and V4('c) is the volume of the 
four-simplex ~'. The angle 0(o-) is the deficit angle for triangle o-, given by 

0(~r) = 2~r-)~ 0(or, r) (5) 
, r  

where the sum is over all four-simplices that contain o-, and 0(o', r) is the 
dihedral angle between the two tetrahedra of r that have or as a common 
face. The angle 4,(s) is given by 

0(o-) = 7 r - Z  0(or, ~') (6) 
, r  

where the sum is over all four-simplices that intersect a triangle on the 
boundary o-. 

We may use (3) to calculate interesting expectation values of xP0: 

(A) = ~ d(OY")~~ sj)~~ 
d(or.1)%(sj)%(sj) (7) 

where d(0Ei) is the volume element on the space of boundary edge lengths. 
If  d(0Z1) is consistent with d ~ ,  then (7) becomes 

dZ~ a(sj) exp[-I(sj)] 
(A)=~c ~c d~,~ exp[-I(sj)] (8) 

where the integral is now over the space of squared edge lengths of the 
compact, boundaryless, manifold formed from M and a copy of itself 
attached at the boundary. 

The lattice link lengths of the theory act as ultraviolet cutoffs, thus 
providing a regularization mechanism. Simplicial quantum gravity has the 
additional advantage of being able to handle a very general set of metrics 
(squared link lengths) having no built-in symmetry constraints. In analytic 
methods, the metrics are limited to some class of metrics described by a 
small set of parameters (e.g., Robertson-Walker metrics or Bianchi l 
metrics), thus ignoring a wide variety of contributions to the path integral. 
Furthermore, since the theory is so general, manifolds with different 
topologies (and even nonmanifold configurations) can be represented easily 
in their simplicial approximations. 
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Although some work has been done, such as the Monte Carlo calcula- 
tion of Hamber and Williams, questions remain to be dealt with before this 
program can be expected to give reasonable results. Some of the questions 
are of a practical nature, such as how to represent a large enough Regge 
lattice on the computer to approximate a reasonable spacetime. However, 
there are other questions that are of a fundamental nature: 

1. Can the Wick rotation of the integration contour from Lorentzian 
to Euclidean signature be justified for gravity? 

2. How can the indefiniteness of the gravitational action (and also the 
Regge action) be dealt with in a physically reasonable way? 

3. What is the form of the integration measure for simplicial quantum 
gravity? 

4. What are the boundary conditions for the space of dynamic variables 
in quantum gravity? 

5. What, if any, is the lattice version of the diffeomorphism group? 
How can gauge fixing and ghosts, if actually necessary, be imple- 
mented in the simplicial theory? 

6. Is the spacetime at the quantum level better described by a discrete 
structure (e.g., Regge lattice) than by the usual continuum manifold? 
In other words, is simplicial quantum gravity an actual theory of 
the small structure of spacetime or is it just an approximation of 
the continuum quantum theory? 

7. How can a spinor structure be associated with a Regge lattice and 
its dynamic structure be developed? Can simplicial quantum gravity 
be rewritten in terms of spinor dynamical variables? 

In the discussion below, we deal with insights into the formulation of 
simplicial quantum gravity in 3+1 dimensions given by null-strut 
geometrodynamics. The insights will deal mostly with the basic structure 
of such a formulation, and possible solutions of the last two questions listed 
above. We shall not present the complete formalism of null-strut calculus 
in this paper, but refer the reader to the literature (Miller, 1985, 1986a,b). 
In Section 2, we discuss a basic structure for (3 + D-dimensional simplicial 
quantum gravity using the light cone induced duality of null-strut 
geometrodynamics. In Section 3, we outline the motivation for using spinors 
in general relativity and null-strut geometrodynamics. We discuss a natural 
formulation of a spinor structure on the null-strut lattice, using the Penrose 
interpretation of a spinor (Penrose and Rindler, 1984). Finally, in Section 
4, we speculate on the possible result of quantizing the spinor structure of 
Section 3. We will outline a (3 + 1)-dimensional generalization of a theory 
of quantum gravity by Ponzano and Regge (1968). In this formulation, 
three-dimensional simplicial quantum gravity can be shown to be a special 
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case of  a spin network. The theory has some very appealing characteristics 
inherent in its structure which may make it useful in the quantum gravity 
program. 

2. THE CANONICAL F O R M U L A T I O N  OF S I M P L I C I A L  
QUANTUM GRAVITY 

Given the covariant formalism outlined above, why would we want to 
develop a canonical version? First of  all, the canonical formulation is closer 
to the nature of  the Dirac version of quantum mechanics, providing both 
a motivation and framework for the development.  The interpretation of 
initial conditions, matrix elements, and expectation values is easier in the 
canonical formalism because of the existence of a time parameter.  Secondly, 
Kuchar (1986) showed that a canonical formalism could be implemented 
with holonomic constraints satisfying the Lie algebra of  the diffeomorphism 
group. The recovery of the diffeomorphism group is a most compelling 
reason to believe that the canonical formalism and the covariant formalism 
are equally sound. Two of  the dynamic variables are the usual 3-metric Yo 
and the extrinsic curvature ki; of  a hypersurface. Given the spatial coordin- 
ates x ~ on a hypersurface E and the spacetime coordinates X ~ on the 
spacetime manifold M, we can parametrize an embedding of E in M by 
the four functions X ~ (x a) such that the relationship between the two metrics 
is given by 

y~b(X; X] = g~I3 (X(x))X~,~(x)X~(x)  (9) 

where the square bracket in Yah(X; X] emphasizes that Tab is a function of 
x and a functional of  X. The X ~ and the momentum variables conjugate 
to them P~, along with a Lagrange multiplier N ~ for the new embedding 
momentum constraint, form the remaining dynamic variables. The con- 
straints of  the resulting theory, as stated above, form a representation of 
the Lie algebra of  the diffeomorphism group. The usual canonical formula- 
tion may be recovered by a suitable transformation. 

One might wonder  why we choose to use the null-strut formulation to 
model our dynamical variables, rather than a Regge lattice version of the 
method developed by Arnowitt et aL, 1962. The fully geometric nature of  
null-strut calculus, coupled to the natural geometric duality of  the structure, 
make it very attractive for the interpretation of the dynamic constraints. 
Furthermore, using null-strut lattices as our basic 3 + 1 structure, we shall 
see that spinors, in the Penrose interpretation, may be elegantly integrated 
into the structure. The basic formalism of canonical simplicial quantum 
gravity in terms of null-strut calculus is given below. 
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Consider an initial ( t = 0 )  compact null-strut sandwich (TET- 
TET*)~,~t~a~ with a constant trace of the extrinsic curvature Tr K = const, 
and a final (t = t') compact null-strut sandwich (TET-TET*)n.a~ with Tr K = 
const' (initial and final spacelike hypersurfaces). We shall use the short-hand 
notation for these two slices given by (TT*)~ and (TY*)f, respectively. 
Connect these two slices with a series of compact null-strut sandwiches 
(TET*-TET-TET*), ,  if possible, such that the resulting spacetime is not 
necessarily a solution of  the 3+ 1 Regge equations (TET equations and 
null-strut equations). We will label vertices in TET with i,j, k , . . . ,  the edges 
in TET with a, b, c, . . . ,  and tetrahedra in TET with a,/3, y, . . . .  No labels 
for the triangles will be necessary. 

This lattice four-geometry becomes a dynamic configuration in the 
canonical path integral, with dynamic variables given by the squared link 
lengths of TET(t) ,  so,; the conjugate momenta (related to the extrinsic 
curvature k,~,, which we will define below), given by p~,; the lapse function 
N~,, describing the local separation between two tetrahedra a on TET(t)  
and the one on the next slice TET(t  + 3t) along the timelike normal vector; 
and the shift vector N~t describing the spacelike separation of these same 
two tetrahedra. The Euclidean canonical path integral for this system is 
given by 

qZo= 1] [ ds,~,dp~.dN~,dN~,exp{-H[s,~t, pa,,Noa, g~,]} (10) 
a,ot, t .  I 

where H is the Hamiltonian for null-strut calculus. The Hamiltonian con- 
straint in Regge calculus was given by Friedman and Jack (1986) as 

1 /-~(a) ~a ~b el/2,q 
---- ~ U a b t F t F , - - 2  ~ ~ t  v(,~t)=O (11) 

4 a,bca a~o~ 

where 

and 

1 G(OO _ rz_(=) .b~ -- '-" ~bt (12) 
V(o~t)C(at)Cbt) 

271" 
O(~t) -  c(at) 8~,~ (13) 

6c~a, ) is the dihedral angle of tetrahedron a( t )  in the entourage of edge 
a(t),  c~a,i is the number of tetrahedra in the entourage of edge a(t),  ~a,'~/2 is 
the link length of a, Vc~, ~ is the volume of the tetrahedron a( t ) ,  and ,--~b,~) 
is the inverse of the Regge calculus version of  the DeWitt super metric 

G ( ~ b  _ 1 02V~t) (14) 
' V~,,t) Osot OSb, 
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The momentum constraint was given by 

-2a.~p m" =0  (15) 

where h~ is a finite-difference version of the gradient on a tetrahedral cell 
ft. For any piecewise constant tensor, A.' is given by the expression 

1 
A ~ L m = 2 V  ~ ~*~E A~L~m (16) 

where Vt3 is the volume of tetrahedral cell fl, *fl is the star of fi (the union 
of fl with the four tetrahedral cells adjoining it), and A~ ~ is the outward 
normal to the face fl c~ 7 with magnitude equal to the area of the face. 

From the constraints (11) and (15), we can form the Hamiltonian 

H = dt P t  Sat N~t Y ~"*abtFt Pt - -  ~at  [7(aat) 
a,b~e~ acex 

+ y 1 .A~N ~ ,p~] (17) 
~,a C(a 0 ~ d 

where A~N~., is the projection of A:N,.~, along the edge l~ of a, denoted 
by 

o~ m n A~N~,  = A.N,~=tl~ l~ (18) 

and 0(.~,) is given by 

2~- 
O ~ t  - 8(~) (19) 

C(at) 

where 3(~) is the dihedral angle of the tetrahedron a on the edge a. 
The following definition was used above: 

f = 2N~, E (20) N(3)Rg 1/2 d 3 x  = 2 ~ . . . . . . . .  ~r oa/2a(~,) 
~at [l(aat) 

V (~t) aEot a~o: 

where No, is defined to be 

N~zO(ot) = Y. N~tO(~o,) (21) 
aE~ 

and we used the chain rule to obtain the last term in (17). 
In order to evaluate the path integral (10) for our null-strut lattice, it 

is imperative that we know how the conjugate momentum p~' manifests 
itself on the lattice. The p~' is directly related to the extrinsic curvature 
projected along the link a, k~, through the expression 

P7 = - V ( ~ , ) ( k 7 - s T  Tr k) (22) 
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Therefore, if we know how the extrinsic curvature is defined on the null-strut 
lattice, we can use (22) to find the conjugate momentum. Knowledge of 
the extrinsic curvature on the lattice is also very important for defining the 
initial data for classical solutions of the Einstein equations. 

We present a very simple, geometric method for extracting the extrinsic 
curvature associated with the triangles in TET. Consider the standard 
coordinate-free definition of extrinsic curvature given by 

d n =  - K ( d P )  (23) 

where n is the unit normal vector at a point P in a spacelike hypersurface, 
and dn is the difference between a unit normal vector at the point P + d P  
on the spacelike hypersurface and the unit vector obtained from the parallel 
transport of the unit normal vector at P to P + d P  [see Figure 2(a)]. 

Now consider the combination of null-strut building blocks in Figure 
2(b). This combination, which we call a null-strut Marionette, is built from 
two wigwams P1 and P2 whose tetrahedral bases in TET share a common 
triangle A B C  and whose summits are connected by a link in TET* of length 
L. If we let dP be a vector from one summit to the other [see Figure 2(b)] 
and we are given an appropriate definition of parallel transport, we can 
use (22) to define the extrinsic curvature in terms of the angle 4~ between 
the wigwam altitude at P + d P  and the other wigwam altitude parallel- 
transported from P to P +dP. The expression obtained is 

2 qJ^ 
K (L~AB C ) ---- - -  an appropriate length sinh -~AABc (24) 

where 

~ABC -- AB ^ AC (25) 
2AaBc 

~A~C is a bivector dual to the unit vector/2 which points along L from P, 
AB is a vector that points from A to B, AC is a vector that points from A 
to C, and AABC is the area of the triangle ABC. The "appropriate length" 
might be taken to be the distance between the barycenters of the two 
tetrahedra of the Marionette. This length is always well-defined for any 
Marionette. Work is continuing to determine if this is an adequate length 
for the denominator of (24) and this work will be published in an upcoming 
paper (Kheyfets et al., 1988). In the affine basis of the null-strut construction, 
the extrinsic curvature defined in (24) is diagonal (as is the Einstein tensor). 
This is a great simplification and could provide needed shortcuts in perform- 
ing computer calculations. 

Now ~O must be defined in terms of the geometry of the Marionette. 
To accomplish this, we need a well-defined parallel transport procedure. A 
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b i" 

C P' 

M A 

d x 

Fig. 2. (a) A graphical representation of the definition of extrinsic curvature in terms of the 
parallel transport of  the normal from P to P+dP. (b) The carrier of  information about the 
extrinsic curvature: the null-strut Marionette, composed of  two wigwam blocks of a null-strut 
sandwich sharing a triangle in TET, and a the filler block between them. The extrinsic curvature 
is a function of the link lengths of  the Marionette. (c) Parallel transport of  a vector via the 
Schild's ladder. (d) Parallel transport  of  a wigwam altitude, in one-plus-one dimensional  
null-strut calculus, via the Schild's ladder. 
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simple geometric procedure is provided by the Schild'~ ladder [see Figure 
2(c)]. Consider the parallel transport of the vector A X  (tangent vector) 
along the curve from A to B (Schild, 1970; Misner et al., 1971). We may 
accomplish this transport in a series of small steps as follows. Choose a 
point M close to A along the curve from A to B. Draw the geodesic M X  
through X and M. Take an affine parametrization A of X M  and use it to 
define a point N by the condition 

AN = �89 + A~) (26) 

Draw the geodesic A N  from A to N and define a parameter P along it. 
We may extend the geodesic A N  past N an equal parameter increment to 
a point P. The vector MP defines the parallel transport of A X  to the point 
M. We may repeat this procedure until the vector is transported, in small 
steps, to B. This construction also allows the definition of covariant deriva- 
tives in an unambiguous manner. 

Figure 2(d) shows a Schild's ladder construction on a (1+1)-  
dimensional version of a null-strut marionette. We can see that, by geometry, 
the construction defines the angle t) in terms of the angles 01, 02, and 03 
as 0 = ~ r - ( 0 1 + 0 2 + 0 3 ) .  The same construction works for the (3+1)-  
dimensional marionette, where 0 is given in terms of the hyperdihedral 
angles of the three building blocks of the marionette 0e,, 0fill . . . .  dge, and 
0p~ as 

I]l= 3T--(Op+ 0ill I . . . .  dge + OP2 ) (27) 

Since 0~H . . . .  dge is a function of L and the TET links, we now know the 
dependence of the extrinsic curvature on the geometry of the Marionette 
through (23) and (27). 

The extrinsic curvature may be defined in an alternative fashion, so 
that it is associated with the links of TET instead of the triangles of TET. 
This definition has two advantages. Terms in the Lagrangian density contain- 
ing the extrinsic curvature and the metric may be defined unambiguously 
since they are associated with the same simplex (link). Second, the appropri- 
ate length in (24) becomes unambiguous, since the natural length scale is 
the link length. 

Consider a vertex X in the TET lattice. We may define a Marionette 
complex around X by considering the union of all Marionettes that have 
X contained in their tetrahedral bases. Since the interiors of the tetrahedral 
bases in TET are flat, the normals to all points in a given tetrahedron are 
parallel, forming a "brush bristle" structure. We may define a normal at 
X, N ( X ) ,  by the weighted average 

N 

N ( X )  = ~ V~ni/normalization (28) 
i= l  
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where ni is a normal on the ith tetrahedron of TET sharing X. This normal 
ni is defined as a unit vector along the wigwam altitude of this tetrahedral 
base (all other normals on the tetrahedron are parallel to this normal). V~ 
is the volume of the ith tetrahedron. Define these normals N(X)  at every 
vertex X of TET. The extrinsic curvature on a link may now be defined by 
parallel transport of N ( X )  along the link 1 to the next vertex ( X +  1) and 
using 

K(I)  = - ~  sinh dn (29) 

where I is the link, Ill is the length of l, ~ is the angle between the normal 
at X + 1 and the parallel-transported normal from X (via Schild's ladder), 
a n d ~ n  is the unit vector along the difference vector dn between the normal 
at X + 1 and the parallel transported normal from X. Note that the extrinsic 
curvature defined this way is no longer diagonal. Application of (29) to the 
case of a cylinder gives the correct expression for the extrinsic curvature 
in the continuum limit. Conceptually, this definition is dual to the first 
definition, and might be used to define the altitude of the fluted cone by 
restricting N(X)  to be the normalized vector from X to the barycenter of 
the truncated octahedron. 

The path integral (10), in principle, can be evaluated by a Metropolis 
algorithm, varying the dynamic variables sat, Pat, N~t, and N~t and calculat- 
ing the corresponding Hamiltonian. The use of null-strut lattices has the 
appealing property of giving us back light cones (fluted cones and wigwams) 
which are lost in going from the Lorentzian to the Euclidean regime. The 
Hamiltonian is not positive-definite, and a methodology for handling this 
problem must be implemented to get convergence from the evaluation of 
(10). The addition of an R-squared term (split into 3+ 1) would work (as 
was done by Hamber and Williams), or we could split the spacetime into 
conformal equivalence classes and distort the integration contour, as sug- 
gested by Hartle. Recently, York (1987) has shown that the nonconformal 
modes near a black hole, which give negative actions, seem to suggest the 
necessity of topological fluctuations. In Section 4, we suggest another 
possibility. 

There is another problem with this program as formulated presently. 
TET* is not a self-suppporting structure, being built of truncated octahedra 
(nonrigid). This means that the dynamic variables sat, Pat, N~t, and N~, 
are not sufficient to determine fully a null-strut configuration. There is still 
some debate over whether structural rigidity is necessary to give a well- 
defined configuration, but for the time being we take the attidue that rigid 
null-strut sandwiches are necessary. Spinors might provide the extra 
dynamic variables necessary for rigidification. In the next section, we discuss 
how we may write a spinor version of the formalism of this section in a 
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simple and natural way. We also discuss how a lattice version of supergravity 
might be formulated, where the spinors are new dynamic variables, using 
the constraints given by (11) and (15). 

3. SPINORS IN NULL-STRUT GEOMETRODYNAMICS 

The usefulness of spinors in general relativity is widely accepted, but 
the methods for including them are varied. General relativity may be 
rewritten in terms of spinors, as shown by the covariant methods of Penrose, 
or, alternatively, by the dual spinor canonical approach of Ashtekar 
(1986a,b). Spinors may also be added to the formalism of general relativity, 
as is done in supergravity (Freedman and van Nieuwenhuizen, 1976). 
Certainly, a spinor formulation of null-strut calculus might provide new 
insight into the structure and implementation of null-strut calculus and give 
new geometric interpretations of  the continuum spinor methods mentioned. 
We develop a lattice spinorial structure based on null-strut calculus below. 
The usefulness in rigidification will be outlined and a comparison to the 
continuum theory of Ashtekar will be given. We also outline how a lattice 
version of supergravity might be developed using the lattice constraints 
developed in the last section. 

Null-strut lattices allow the inclusion of spinors in a simple and natural 
way. Consider the comparison, given in Figure 3, of a light-cone and the 
null-strut equivalent: the fluted cone. This figure shows how the triangles 
formed by two null-struts emanating from a given vertex in TET, along 
with the link in TET* between them, may be replaced by null Lorentz 
spinors in the Penrose interpretation. One of the two null-struts forms the 
"flagpole" and the link in TET* is a vector in the "flag plane." The resulting 
structure has new degrees of freedom, namely the phase angles, which, 
given a set of dynamic constraints for these spinors, might be used to 
"rigidify" the null-strut lattice. Let us consider these spinors in more detail. 

Consider a vertex in the TET(t)  lattice X. There are 24 null-struts from 
this vertex connecting to the 24 vertices of a truncated octahedron in 
F-TET*(t).  We label these null-strut four-vectors from X as y~(X), where 
i =  1 . . . .  ,24; /~ = 1 . . . .  ,4. Six spinors may be associated with the six 
triangles in the entourage of one of these null-struts y~(X) (see Figure 4), 
each one having this null-strut as its "flagpole" and having a spacelike 
vector, from either TET; x~(X) or TET*; k~k(X) ( j  = 1 . . . . .  3; k = 1, . . . ,  3; 
~r = v = 1 . . . .  ,4), defining the plane of the "flag" (see Figure 4). 

Let us discuss the spinors that use k~,k to define the "flag" first, since 
they are the ones that are crucial for fixing the TET* lattice. We can express 
the null "flagpole" vector y~,(X) in terms of a 2-spinor form Yi A~ such that 

y~,(x)=-~Ao' " YAO(x) (30) 
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spin 
vector spinor 

~ '~  ~ spin vector 

spin 
vector 

Fig. 3. The definitions of a Lorentz spinor and a spin vector on a light cone and the analogous 
definitions on tne null-strut light cones (wigwam and fluted cone). The triangles formed from 
two null-struts from the same vertex and a spacelike link give us the "flag plane" of the spinor. 
One of the null-struts is the "flagpole" of the spinor. The spin vector is a generalization of 
the spacelike link. 

where  cr~u are the Paul i  sp in  matr ices ,  and  the dots  and  capi ta l  let ters near  
the end o f  the  a l p h a b e t  are used  to d i s t inguish  those  c o m p o n e n t s  tha t  
t r ans fo rm accord ing  to the complex  conjuga te  o f  the Lorentz  t r ans fo rmat ion ,  
as we will d iscuss  below.  Since the " f l agpo le"  is null ,  we may  write y AO as 

YioC~(X) = ~ f fk (X)~i~(X)  (no sum on i', k) (31) 

where  ~ k  is a basis  1-spinor.  The ba r  signifies the complex  conjugate .  
A v 

Similar ly ,  we may  write the  space l ike  uni t  vectors  ki,k a long ki,k in thei r  
2 - sp inor  form /~flkv(X) such that  

=--~o 'Bv~rk  ~-~) (32) 
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kV, 2 
k v i ' l  

T* 

xq, 

TET 

Fig. 4. Tile triangles in the entourage of the null-strut AB, interpreted as spinor flags, Each 
triangle is composed of two null-struts (bold lines), and a spacelike link in either the configur- 
ation lattice TET (x~l), or the momentum lattice TET* (k~,k). The null-strut lattice may be 
interpreted as a network of  2-spinors (and a dual network), thus providing a method for 
developing a spinor formulation of null-strut calculus. The spacelike links may be generalized 
to spin vectors. This could provide a way to generalize the spin network theory of three- 
dimensional quantum spacetime to four dimensions. 

Since /~i~,k is spacelike, we may write /(~,Bff(X) as 

= 

+ rl~k(X)~,V,k(X) (no sum on i'k) (33) 

where r/vk is the other basis 1-spinor. We shall not refer to the basis 1-spinors 
again, since, given that we are in a nonorthonornal affine tensor basis, the 
basis spinors cannot both be interpreted naturally on the null strut lattice 
at the same time. 

Since the spacetime is locally Lorentz-invairant, 2-spinors X 'Ac~ 
emanating from a vertex in TET are related by Lorentz transformations L A 

x , A U  -- I A  vB~/ i-Q 
- " - ' B ' ~  "- ,V ( 3 4 )  

where s  is the complex conjugate of the Lorentz transformation (no 
transpose). The set of Lorentz transformations on the fluted cone contains 
the information about the angles of the corresponding truncated octahedron 
in TET* through the spinor phase angles, thus fixing the rigidity. We 
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speculate that these transformations (or the spinors themselves) might be 
treated as new dynamic variables, which along with s,,, Pot, N~,, and N] ,  
provide the necessary structure for the canonical lattice gravity program 
outlined in Section 2. 

Let us now consider an alternative way to reformulate the null-strut 
lattice in terms of spinors, such that a single null-strut sandwich may be 
completely written in terms of spinor variables. Using the basis spinors 
mentioned above, we can write down the following 2-spinor: 

K,~U(X) A - u  = [k,klrt,k(X) ,k(X) + (35) 

where [kik] is the length of the link in TET*, ki~. The K~ u is the spinor 
formulation of ki~, and contains all of  the information of ka,, plus informa- 
tion to fix the angles of the truncated octahedra. 

Now, consider the past-pointing light cone built of  the four past- 
pointing null-struts from a vertex in TET* X',  connected to the vertices of 
a tetrahedron in TET (a wigwam). A set of basis spinors may be assigned 
to the triangles in the entourage of one of these null-struts exactly as above. 

t A  t Let us denote this basis as (~:~z ( X ) ,  ~7~P(X')). Here j is an index which 
specifies which null-strut from X'  is the "flagpole" and 1 specifies which 
link in TET defines the "flag plane." Therefore, we may define a 2-spinor, 
similar to that in (28), as 

xj ,u(x,) , A  , _ , u  , : Ixj, l[~r (x)T/j ,  ( x ) +  ~7;~(x')~'ff(x')] (36) 

where ]xjt[ is the length of  the vector x~ in TET describing a link. The 
x jAO(x  ') contains all information on the structure of  TET. The phase angles 
are trivially related, through trigonometric identities, since the tetrahedra 
of TET are self-supporting. Again, we will not consider the basis 1-spinors, 
for the same reasons given above. We may now, given a set of dynamic 
constraints, use K~AO(x), x jA~  the lapse function N,~t, and the shift 
vector N~, as the dynamic variables in our canonical lattice quantum gravity 
formulation. This structure has the advantage of  conceptual simplicity, 
being a spinor network. 

Now, consider the relationship between this structure and the con- 
tinuum spinor formulation of  Ashtekar. This analogy gives new insight into 
the geometric content of the Ashtekar formalism and could provide new 
methods of numerical solution of both classical and quantum gravity. The 
first spinor dynamic variable in the Ashtekar formalism is a densitized 
soldering form ~:~,B from the space of trace-free 2-spinors to the space of 
vector densities of weight one on the spacelike hypersurface. It is related 
to the metric q~b on the spacelike hypersurface by the relation 

(det q)qab ~au ~bA =--rA rB (37) 
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Clearly, the variable Xj  Au is close to a lattice analog to "CAB since 

I x f = - ! v  yAo 2",jIAU-',j~ (38) 

where [x~] 2, the squared length of the link l in TET, is the lattice analog of 
the metric�9 Densitizing Xj  Au requires dividing by an average volume element 
V~ of the tetrahedrons containing link L Call the densitized variable _~jAU. 
Then (38) becomes 

V a t x f l l  2 = L V  . ~ r A ( J  - 2-"~jiA U~"ji (39) 

in direct analogy with (37). 
The second dynamic variable in the Ashtekar formalism is a connection 

on the hypersuface D~ over the space of 1-spinors, given by 

A a A A B  Dah8 =OohB + B (40) 

where On is a fixed flat connection on the hypersurface, and A AB is given by 

A A B _  A B - -  1 A B  (41) 
- F a  ~- /2zro 

AB with cAB the where F A~ is the unique connection which annihilates To , 
nondensitized soldering form related to ~ B  by ~AB=(detq)-l/2"r~nB, 
between the space of trace-free 2-spinors and the space of tangent vectors 
of the spacelike hypersurface, r AB satisfies the relation 

aB bA (42) qab = - - T A  T B  

A B  r is related to the extrinsic curvature kob by the relation 

ko b B A (43) T~(aA)"t'b) B 

We may use A~ B as the dynamic variable instead of Do. 
The lattice variable K AU, since it is related to the TET* link length L, 

contains information about the extrinsic curvature. The direct relationship 
between K~ U and A AB is certainly quite complicated, given the complicated 
relationship between L and the extrinsic curvature on the Marionette. The 
Gauss law constraint of the Ashtekar formalism 

- a B  D~rA = 0 (44) 

has a very simple lattice interpretation and can be used to interpret the 
analog of A 2B on the lattice, AU A a  . Since we now know how to parallel- 
transport on the lattice (Schild's ladder), and we know that 4~B has a direct 
relationship with a link in TET, A AU may be interpreted as follows: 

Convert a 2-spinor X~ AU of a TET link from the wigwam at P of a 
Marionette to the spacelike vector x~ and parallel-transport this vector to 
the other wigwam at P +  dP. Convert this vector back to its spinor form. 
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We have now performed parallel transport on the spinor Xj A~. Now, A2 ~ 
is related to the Lorentz transformation necessary to rotate this parallel- 
transported spinor in to a spinor of the wigwam at P + dP. There are many 
unanswered questions in this investigation and work is continuing toward 
developing a complete formalism. It should also be noted that Finkelstein 
and Rodriguez (1986) have been attempting to develop a quantum manifold 
with a free Clifford algebra. The spinor network structure presented above 
is such a Clifford algebra and provides a compelling avenue toward achiev- 
ing their program. 

A compelling structure for defining a general relativistic theory with 
spingrs is provided through the "square root of general relativity" formalism 
developed by Tabensky and Teitelboim (1977). This formalism ties the 
constraints of supergravity to the natural introduction of spinors into general 
relativity, thus yielding a theory that is more than just a reformulation of 
ordinary null-strut calculus, as are the formulations given above. The formal- 
ism was motivated by Dirac (1958), who showed that when the constraints 
for a Klein-Gordon particle (which is spinless) are reduced by a "square 
root" procedure, from quadratic in the momenta to linear in the momenta, 
the result is the Dirac equation for the electron. As a result of the "square 
root" procedure, new dynamic variables obeying anticommutation relations 
were introduced (Dirac spinors), which were associated with the spin of 
the electron. Einstein's theory is also quadratic in the momenta. Teitelboim 
performed a similar "square root" procedure on the Hamittonian and 
momentum constraints of general relativity. The procedure is outlined 
below. 

The first step is to reformulate the canonical form of general relativity 
in terms of orthonormal frames (tetrads), which are required if a coupling 
to spinor fields is to be accomplished. We introduce at each point in space 
a triad of vectors A~ (a, i=1 ,3 ) ,  which satisfy the completeness and 
orthogonality relations 

and 

ha~h~j = g~ (45) 

i 
AaiZ b = 6ab (46) 

where g~ is the spatial metric (with conjugate momenta frO). We also 
introduce the conjugates of A.i, called ~-ia, which satisfy the commutation 
relations 

Ihoi(x), ~ (x ' ) [  = i6ab~6(x,  x')  (47) 

The tetrad is formed from the triad Aai and the normal to the spacelike 
hypersurface. This allows us to make arbitrary localized spatial rotations 
on the hypersurface without surface deformations. 
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The constraints of  this theory are composed  of  the generators of  normal 

and 

VA(X)  = g t / 2 [ y ~ ,  yJ]V~0~+trilinear terms in the spinors (55) 

where ~0j is a Majorana vector-spinor, and V~q,j is the torsion-free covariant 
derivative of q6. The anticommutator of A with itself becomes 

{AA(X), Aa(x')} = ~(x, ~'~" " uNEW (56) .A ] Y A B l a t x  

where H~ Ew differs from (48) and (49) by spinor terms. Finally, the new 
constraints are given by the supersymmetry generator 

A A ( X )  = 0 (57) 

the surface deformation generator 

H N E W  0 ( 5 8 )  

and tangential surface deformations, which are 

Ho = Gijkizr~ kl - g l/2 R ~- 0 (48) 

and 

H1 = -27r~lj ~ 0 (49) 

respectively, and the generator of local rotations Y.b, which is 

i i 
~,~ = 1rabbi -- 7r b;t.~ ~ 0 (50) 

Gijk~ is the ~176 given by 

Gijk~ = �89 1/2 ( g~ggj, + gi~gjk -- g~gk~) (51 ) 

R is the curvature of g~, and the vertical slash in (49) denotes spatial 
covariant differentiation. ~r ~ is related to ~ria by 

,IT/j 1 i j j i 
-- ~(~oA o + ~ h  o) (52) 

To perform the "square root" procedure on the constraints given by 
(48)-(50), we must form a function which is linear in the momenta 

A A ( X  ) = F AijTr ij AC V A ( 5 3 )  

FA~j and VA are independent of ~-~ and must be chosen so that the anticom- 
mutator {AA(X), AB(x')} is a linear functional of the constraints (48)-(50), 
with the possible modification by terms containing FA/j, which disappear 
in the continuum limit. The simplest candidates for Fmj and Va turn out 
to be 

FAO = �89 Y,0j + %0~) (54) 
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e -  

A F-TET* 

) 
Fig. 5. The result of measuring any component of the velocity for a free Dirac electron yields 
the speed of light. The analogy between this Zitterbewegung of the Dirac electron and the 
lightlike propagation of the three-geometry in null-strut calculus is displayed in this diagram. 
The development of a Clifford algebra (" y") for null-strut calculus may be obtained, in analogy 
with the Clifford algebra of the Dirac electron (y), by finding the "square-root" constraints 
of the theory. 

and the rotat ion generator  
N E W  - -  

~/~b --  0 ( 5 9 )  

where NEW Yak differs f rom (50) by rotations of  the spinor variables. The 
algebra for  the constraints o f  this theory is the same as supergravity. A 
similar p rocedure  might  be possible on the null-strut lattice version o f  the 
constraints,  given by (11) and (15), to obtain the lattice supergravity con- 
straints. The development  o f  this structure is under  investigation. 

A further  motivat ion for the "square  roo t"  approach  is given by the 
analysis o f  the mot ion  of  a free Dirac electron. Due to the principle o f  
uncertainty,  a measurement  o f  any componen t  o f  the velocity o f  a free 
electron leads to the result • In a loose sense, the Dirac electron moves 
along a path  o f  connected null-struts (see Figure 5), much as the three- 
geometries in null-strut geomet rodynamics  propagate  in time along a series 
o f  null-struts. 

4. F U R T H E R  I M P L I C A T I O N S  OF  T H E  S P I N  S T R U C T U R E  
OF S P A C E T I M E  

In this section, let us indulge in some unbridled speculat ion on further 
possible implications o f  the spinor structure o f  spacetime discussed in 
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Section 3. Let us assume, for the sake of argument, that the simplicial 
structure is fundamental and the continuum is an approximation. Several 
physicists have given compelling arguments in this direction, including Lee 
(1984) and Penrose (1970, 1972). This assumption is central to the following 
presentation. 

A most compelling formulation of three-dimensional quantum gravity 
in terms of spin networks was given by Ponzano and Regge and elaborated 
on by Hasslacher and Perry (1981) and Lewis (1983). A description of the 
formalism begins, just as in Euclidean simplicial quantum gravity, with the 
triangulation of the two-dimensional boundary (S 2 at infinity for vacuum 
or S ix  S 1 for a canonical ensemble at temperature /3-~), except that the 
link lengths are restricted to the values (j~+l/2)h, where j i=  
0, 1/2, 1, 3/2, 2 , . . . .  This triangulation acts as a spin network. To this 
triangulation we associate a quantity Z which is the 3nj-coefficient of the 
resulting spin network. 

Yutsis et al. (1960) give a good presentation of the 3nj-coefficient and 
we will not attempt to reproduce the whole account here. The 3 nj-coefficient, 
denoted by 

jl J2" ' ' j~  } 
11 12"'" In (60) 

kl k2 �9 k, 

(where the ji, li, and k~ are total angular momentum quantum numbers), is 
a product of generalized Wigner coefficients, denoted by 

( Jm: "''jn I A (61) 
mn,l al...an_ 3 

(where A describes the coupling scheme, and the ai are the intermediate 
angular momenta), which are summed over all the magnetic quantum 
numbers m~. The generalized Wigner coefficients are a symmetrical version 
of the usual generalised Clebsch-Gordan coefficients for the addition of 
angular momenta, 

(jim1" �9 �9 jnrn, [(j," �9 " j n ) a  a l  " " " an-2JM) 

= (-1)f~(s,"s~)[(aO...  ( a n _ 2 ) ]  ~/2 

. j a 

where fa is a function of the addition scheme. The simplest example of a 
3hi-coefficient is the 6j-coefficient, which is a product of four Wigner 
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coefficients, given by 

{~ 1J2J3"~ = 2 (--I) jl-ml+j2 m2+J3--r~3+ll--nl+12--~2+[3--n3 
1 12 13J . . . .  

ml rn2 -m31 -rnl n 2 n 3 /  k n  ~ - n  2 m 3 /  k - - n  ~ - -m2 --n3 
(63) 

Figure 6 shows the graphical representation of a 6j-coefficient. Any 3nj- 
coefficient can be written as a product of 6j-coefficients, using the relation 

jl  j2 " " " Jn ] 
I1 12 " In = 2 ( r ) ( - - 1 )  n"*(n-1)r 

kl k2 " k~ 

{Jl kl r~j2k2 r}...[ j~-Ik~ ' r IIJ~k~ r } 
x k2 J2 t~J(k3 j3 12 ( k, j ,  l , _ l j ( j l  kl In 

(64) 

where 

R , =  E ( j i+ki+l i )  (65) 
i=1 

We can use (64) to devise an operation which fills the interior of the 
boundary with a net of tetrahedra (6j-coefficients), each obeying the same 
rules as the boundary. The resulting simplicial complex is a three- 
dimensional space. It can be shown that the three-dimensional path integral 
of quantum gravity is a special case of the 3nj-coefficient given by Z. 

Let us consider a simple example where the triangulated two- 
dimensional boundary is a tetrahedron (S 2 topology). Therefore Z is a 6j 
symbol. The link length from vertex j to vertex k will be denoted by ajk. 

Fig. 6. Graphical representation of the 6j symbol. 
This is the basic building block of three- 
dimensional quantum spacetime in the spin 
network theory. 
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The asymptotic form of the 6j symbol for large values ofji,  with the usual 
simplicial inequalities satisfied, is given by 

{J1J2J3]~( ~3 /1/2 [ (  1 ~r] 
J4J5J6 \1--2~V] cos k~k'~ajkOik)+-~ (66) 

where V is the volume of the tetrahedron, and 0jk is the angle between the 
outward unit normals to the faces that are separated by link jk. If we 
analytically continue this expression to the regime where the simplicial 
inequalities are violated (the tetrahedron cannot be produced in flat R3), 
we get the expression 

5:( h3 /l/2 1 I/ exp - - -  ~ Ojkl/ (67) 
[J4J5 

where Ojk and V are the analytic continuations of the corresponding 
expressions when the simplicial inequalities are satisfied. This regime corre- 
sponds to quantum coupling of angular momentum and a nontrivial 
topology for the interior of the tetrahedron. 

The 6j symbols obey an identity introduced by Biedenharn (1953) and 
Elliott (1953) given as 

J1 J2 J3~J1-/2 J3~ =~ (_l)e~(2x + 1) 
11 12 /3J[/4 15 /6J 

{J1 1516~'4'216~1415J3} (68) 
x x 13 12J[13 x llJ[12 II 

where 

~b = x+~] li +~ j i  (69) 

and x runs over an allowed domain. We must note that this identity applies 
even if the 6j symbols on the left-hand side are in the classical domain, 
and the 6j symbols on the right-hand side are in the quantum domain. 
There is also an identity which replaces a 6j symbol by four 6j symbols, 

{dbC}= ~ (2w+l)(2x+l)(2y+l)(2z+l) 
e f allowed domain of w,x,y,z 

I . xyzJ[yzw z w x J ( w x y  
The geometric interpretation of this identity is given in Figure 7. The general 
procedure can now be presented as follows. 

If we have a 3nj-coefficient referring to a two-dimensional boundary, 
we can decompose it into a sum of products of 6j symbols. These 6j symbols 
correspond to the n/2 tetrahedra (simplicial inequalities are not necessarily 
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f 

Fig. 7. Graphical representation of the quantum cobordism identity. Every 6j symbol can be 
decomposed into the sum of products of four 6j symbols. It allows an approach to the 
continuum by repeated application of this decomposition procedure. The resulting theory 
contains a scale invariance (with renormalization parameter) not present in ordinary simplicial 
theories. 

satisfied) in the tesselation of the interior of  the boundary. We can apply 
(70) to each of  the n/2 tetrahedra. Applying (70) a total of  p times to the 
tetrahedra yields m = 22p-1 tetrahedra and a successively finer mesh, but 
does not effect the value of  Z. This is known as a quantum cobordism 
operation. As p approaches infinity, the mesh approaches the continuum 
three-dimensional space. 

We can examine the semiclassical limit of  the 3nj-coefficient by letting 
h go to zero, letting p go to oo, and keeping the edge lengths on the boundary 
fixed. As we let p go to oo, the mesh becomes fine enough to tesselate any 
three manifold with the simplicial inequalities satisfied. Letting h approach 
zero while keeping the edge lengths fixed is equivalent to letting j~ go to ~ .  
We can therefore replace all of  the 6j-coefficients in the decomposit ion by 
their asymptotic form. After splitting the cosines of  (66) into exponentials, 
we obtain 

i Z~f t~i dxi(2Xi'4-1)exp(-~tetrah~edra,j, kajkOjk~-2m-2qT) (71) 

where xi are variables assigned to the internal links. This is just the path 
integral for three-dimensional simpliciat quantum gravity. 

We see from the development above that the 3nj-coefficient is a much 
more general structure than the path integral. This richer structure has the 
following desirable properties: 

1. The formalism gives a physical justification for the inclusion of a 
renormalization cutoff: �89 

2. The discrete theory is a consistent generalization of the continuum 
theory. 
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3. The theory contains a natural renormalization parameter p, which 
comes about from a fractal approach to the continuum. 

4. Spacetime foam is automatically included in the theory by the 
relaxation of the simplicial inequalities. 

5. Calculations can be done without the evaluation of path integrals, 
since the general expression for the 3nj coefficient is strictly com- 
binatorial in nature. 

6. The theory of quantum gravity is reduced to very simple building 
blocks with very simple laws: spins and their addition. 

7. Consider the evaluation of the semiclassical path integral given by 
(71) using the Monte Carlo method. The restriction of the link 
lengths to nonzero integer multiples of �89 means that if the measure 
has a sufficiently strong dependence on the link lengths in the 
denominator (at least exponential), configurations with large nega- 
tive curvatures would be suppressed. This is because these configur- 
ations would require large link length values, unlike the continuum 
link length case, where large curvatures can occur due to link lengths 
becoming small or large. We therefore have a possible solution to 
the positive-definiteness problem. 

Unfortunately, the generalization of the theory to four dimensions is 
unclear and very little work has been done to develop the theory further. 
The spinor network formulation discussed above may provide the natural 

TET 
I 

Fig. 8. A possible graphical representation of a quan tum cobordism identity in four 
dimensions.  The four-simplex (wigwam) is decomposed into the sum of products of  four 
wigwams. A similar identity might be formulated for the fluted cones. This suggests that 
four-dlmensional quan tum spacetime may be formulated as two spin networks, dual to each 
other. 
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four-dimensional analog to the spin network formulation, since the spinor 
is the natural extension of the spin vector. If we consider the Penrose 
interpretation of the Lorentz spinor, as used in our null-strut formalism 
(see Figure 3), the links in TET* and TET can be reinterpreted as spin 
vectors. Let us restrict these links to the discrete values (j~+ 1/2)h. This 
means that the three-dimensional hypersurfaces of TET(t) and TET*(t) are 
interpreted as spin networks in the sense given previously, except that there 
are constraints between the spin network of TET(t) and the spin network 
of TET*(t). The naive assignment of 3nj-coefficients to the spacelike hyper- 
surfaces is probably not reasonable. 

The constraints between the spin networks might be thought of as being 
due to the interaction of integer-spin objects (null-struts) with the half- 
integer-spin objects of the spin networks. Finkelstein and Rodriguez have 
mentioned the fact that the simplices of a quantum manifold should have 
both integer and half-integer spins it its spectrum. Using rules for the 
interaction of inter-spin objects and half-integer-spin objects, it might be 
possible to form an analog of the 3nj-coefficient which would reduce to 
four-dimensional simplicial quantum gravity (or some reasonable generaliz- 
ation) in the semiclassical limit. A possible generalization of the quantum 
cobordism, which fills the fluted cones (and the wigwams), is exhibited in 
Figure 8. Certainly, the recovery of part of the beautiful properties listed 
above makes the effort expended in this program worthwhile. Meanwhile, 
a two-dimensional simplicial quantum gravity program is being imple- 
mented to evaluate the semiclassical path integral with discrete link lengths 
and several avenues for generalizing spin networks are being studied. 
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